Nonnegative Definite EAP and ODF Estimation via a Unified Multi-shell HARDI Reconstruction

نویسندگان

  • Jian Cheng
  • Tianzi Jiang
  • Rachid Deriche
چکیده

In High Angular Resolution Diffusion Imaging (HARDI), Orientation Distribution Function (ODF) and Ensemble Average Propagator (EAP) are two important Probability Density Functions (PDFs) which reflect the water diffusion and fiber orientations. Spherical Polar Fourier Imaging (SPFI) is a recent model-free multi-shell HARDI method which estimates both EAP and ODF from the diffusion signals with multiple b values. As physical PDFs, ODFs and EAPs are nonnegative definite respectively in their domains S2 and R3. However, existing ODF/EAP estimation methods like SPFI seldom consider this natural constraint. Although some works considered the nonnegative constraint on the given discrete samples of ODF/EAP, the estimated ODF/EAP is not guaranteed to be nonnegative definite in the whole continuous domain. The Riemannian framework for ODFs and EAPs has been proposed via the square root parameterization based on pre-estimated ODFs and EAPs by other methods like SPFI. However, there is no work on how to estimate the square root of ODF/EAP called as the wavefuntion directly from diffusion signals. In this paper, based on the Riemannian framework for ODFs/EAPs and Spherical Polar Fourier (SPF) basis representation, we propose a unified model-free multi-shell HARDI method, named as Square Root Parameterized Estimation (SRPE), to simultaneously estimate both the wavefunction of EAPs and the nonnegative definite ODFs and EAPs from diffusion signals. The experiments on synthetic data and real data showed SRPE is more robust to noise and has better EAP reconstruction than SPFI, especially for EAP profiles at large radius.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressive Sensing Ensemble Average Propagator Estimation via `1 Spherical Polar Fourier Imaging

In diffusion MRI (dMRI) domain, many High Angular Resolution Diffusion Imaging (HARDI) methods were proposed to estimate Ensemble Average Propagator (EAP) and Orientation Distribution Function (ODF). They normally need many samples, which limits their applications. Some Compressive Sensing (CS) based methods were proposed to estimate ODF in Q-Ball Imaging (QBI) from limited samples. However EAP...

متن کامل

Estimation and Processing of Ensemble Average Propagator and Its Features in Diffusion MRI

Diffusion MRI (dMRI) is the unique technique to infer the microstructure of the white matter in vivo and noninvasively, by modeling the diffusion of water molecules. Ensemble Average Propagator (EAP) and Orientation Distribution Function (ODF) are two important Probability Density Functions (PDFs) which reflect the water diffusion. Estimation and processing of EAP and ODF is the central problem...

متن کامل

Diffusion propagator imaging: a novel technique for reconstructing the diffusion propagator from multiple shell acquisitions

INTRODUCTION: Many recent techniques have been introduced for high angular resolution diffusion imaging (HARDI) [1 and references therein], to infer the diffusion or fiber orientation distribution function (ODF) of the underlying tissue structure. These methods, mostly designed for fiber tractography, are normally based on a single shell acquisition and can only recover some angular information...

متن کامل

Multiple Q-Shell ODF Reconstruction in Q-Ball Imaging

Q-ball imaging (QBI) is a high angular resolution diffusion imaging (HARDI) technique which has been proven very successful in resolving multiple intravoxel fiber orientations in MR images. The standard computation of the orientation distribution function (ODF, the probability of diffusion in a given direction) from q-ball uses linear radial projection, neglecting the change in the volume eleme...

متن کامل

RECONSTRUCTION OF THE ORIENTATION DISTRIBUTION FUNCTION IN SINGLE AND MULTIPLE SHELL Q-BALL IMAGING WITHIN CONSTANT SOLID ANGLE By

Q-ball imaging (QBI) is a high angular resolution diffusion imaging (HARDI) technique which has been proven very successful in resolving multiple intravoxel fiber orientations in MR images. The standard computation of the orientation distribution function (ODF, the probability of diffusion in a given direction) from q-ball data uses linear radial projection, neglecting the change in the volume ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 15 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2012